Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

نویسندگان

  • Yulia Yarkhunova
  • Christine E Edwards
  • Brent E Ewers
  • Robert L Baker
  • Timothy Llewellyn Aston
  • C Robertson McClung
  • Ping Lou
  • Cynthia Weinig
چکیده

Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic architecture of ecophysiological and circadian traits in Brassica rapa.

Developmental mechanisms that enable perception of and response to the environment may enhance fitness. Ecophysiological traits typically vary depending on local conditions and contribute to resource acquisition and allocation, yet correlations may limit adaptive trait expression. Notably, photosynthesis and stomatal conductance vary diurnally, and the circadian clock, which is an internal esti...

متن کامل

Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa.

Much has been learned about the architecture and function of the circadian clock of Arabidopsis thaliana, a model for plant circadian rhythms. Circadian rhythms contribute to evolutionary fitness, suggesting that circadian rhythmicity may also contribute to agricultural productivity. Therefore, we extend our study of the plant circadian clock to Brassica rapa, an agricultural crop. Since its se...

متن کامل

Salinity Effects on Mineral Nutrients and Performance of Turnip (Brassica Rapa L.) at Different Growth Stages

In order to study the effects of different salinity levels on turnip (Brassica rapa L.), an investigation was conducted at Yasouj University, Iran, in 2010. The effects of four salinity levels including 1.92, 9.87, 19.6 and 21.94 ds m-1 (20:1 ratio of NaCl: CaCl2 in Hoagland solution) on germination, vegetative and maturity stages of turnip (Baherghan landrace) were investigated. The results re...

متن کامل

Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchan...

متن کامل

Impact of Interspecific Hybridization between Crops and Weedy Relatives on the Evolution of Flowering Time in Weedy Phenotypes

BACKGROUND Like conventional crops, some GM cultivars may readily hybridize with their wild or weedy relatives. The progressive introgression of transgenes into wild or weedy populations thus appears inevitable, and we are now faced with the challenge of determining the possible evolutionary effects of these transgenes. The aim of this study was to gain insight into the impact of interspecific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 210 1  شماره 

صفحات  -

تاریخ انتشار 2016